Dieser Band Numerische Mathematik hat Prinzipien des numerischen Rechnens, numerische lineare Algebra und Näherungsmethoden in der Analysis zum Inhalt. Der Begriff der Approximation zieht sich als roter Faden durch den gesamten Text. Die Betonung liegt dabei weniger auf der Bereitstellung möglichst vieler Algorithmen als vielmehr auf der Vermittlung mathematischer Überlegungen, die zur Konstruktion von Verfahren führen. Jedoch werden auch der algorithmische Aspekt und entsprechende Effizienzbetrachtungen gebührend berücksichtigt. An vielen Stellen wie etwa bei den Untersuchungen zur Komplexität von Algorithmen, bei der Behandlung schlecht konditionierter Probleme, in dem Abschnitt über Splines oder auch bei der numerischen Kubatur geht der dargebotene Stoff über den Inhalt einer einsemestrigen Vorlesung zur numerischen Mathematik hinaus, so daß man beim Gebrauch des Buches für eine solche Vorlesung eine Auswahl treffen wird. Zahlreiche historische Anmerkungen sowie Querverbindungen und motivierende Erklärungen runden dieses Buch ab. Wer glaubt, daß die "Numerische Mathematik" nur aus einer Ansammlung von Algorithmen zur Lösung von Problemen besteht, der hat dieses Buch noch nicht in der Hand gehabt. Die Autoren haben die Betonung auf die Vermittlung mathematischer Überlegungen, die zur Konstruktion von Verfahren führen gelegt, ohne dabei den algorithmischen Aspekt und die entsprechende Effizienzsteigerung zu vernachlässigen. Zahlreiche historische Anmerkungen, Querverbindungen und motivierende Erklärungen haben dieses Buch zu einen Juwel der Lehrbücher zur "Numerischen Mathematik" gemacht.